N91-10614
/57

Experiences with Ada in an Embedded System

Robert J. LaBaugh
Martin Marietta Astronautics Group ;
Space Systems ! L( ' {
Denver, Colorado 80201 '\] i

Introduction

This paper describes recent experiences with using Ada in a real time environment. The
application was the control system for an experimental robotic arm. The objectives of
the effort were to experiment with developing embedded applications in Ada — evaluating
the suitability of the language for the application, and determining the performance of the
system. Additional objectives were to develop a control system based on the NASA/NBS
Standard Reference Model for Telerobot Control System Architecture (NASREM) in Ada,
and to experiment with the control laws and how to incorporate them into the NASREM

architecture.

Background

The arm to be controlled has five degrees of freedom — one degree in each of the shoulder
and elbow joints, and a wrist with roll, pitch, and yaw. An Intel 80386 single board computer
in a Multibus II system was used for the controller. The board contained an 80387 math
coprocessor, two megabytes of RAM, and a single RS-232 serial port. The clock frequency
for the system was 16 MHz. Rather than just use the 80386 as a fast 8086, the 80386 was
operated as a 32 bit processor in the protected mode, which provides for segment sizes of

up to four gigabytes.

The Ada compiler selected was the DDC-I cross compiler for the 80386, which was hosted
on a MicroVAX. This compiler was targeted to a bare machine, so there was no operating
system to either provide services or detract from the performance of the system. The
runtime system supplied with the compiler provided all of the services needed to support

the features of the language, including initialization of the hardware, memory management,
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time management, the Ada tasking model, and interrupt handlers. An operator interface
for the application was implemented using the standard Ada Text_IO package. This package
uses the RS-232 port on the single board computer for the standard input and output of
Text_10.

Development Approach

The software development system is shown in Figure 1. It consisted of a Rational R1000,
a MicroVAX I, and a PC clone. The systems were connected via Ethernet, which was
used to transfer files between the systems. Initial program development was done on the
Rational. To facilitate code debug and checkout on the Rational, Ada routines to simulate
the hardware were developed. These were used to replace the low level hardware interface
routines. When the target hardware and compiler became available the source code was
moved to the MicroVAX. Target peculiar modifications were made to the code, such as the
specification of task entries as interrupt handlers and the hardware interface routines. The
code was then compiled and linked on the MicroVAX, and the resulting load module was
downloaded to the PC. The PC served as the controller for the in-circuit emulator, which

was used to load and control the execution of the code in the target system.

MicroVAX PC
Rational
ationa (80386 Compiler) ICE Controller
Ethernet
Robot . 80386
Control [@—P] 3"(;1;2:;)1‘553"0 ——» |- Circuit
Electronics Emulator

Figure 1. Development System
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Even though the capabilities of in-circuit emulators are improving, this was a less than
optimal environment for debugging code. Having to move from one terminal to another,
moving files from one system to another, and the limitations on file names on the PC all
hinder code development and checkout. The movement is clearly toward being able to
compile, download, and debug from a terminal on the host development system. There are
some systems which currently allow this, but the targets are connected to the host by an
RS-232 line. The relatively slow download speeds limit the size of programs which can be

effectively developed using these systems.

Ada Features Used

Ada tasks and task rendezvous were used for synchronization and communication between
tasks. Task priorities were established using the priority pragma. An interrupt handler
was coded in Ada to service the timer used to provide the control loop cycle. This was
accomplished using an address clause for a task entry — which is the technique specified
in the Ada Language Reference Manual for defining interrupt handlers. The Low_Level 10

package was used to communicate with the hardware controlling the joints on the arm.

There was one package where machine code insertions were used. This was used to provide
procedures to disable and enable interrupts. These routines were not really needed by the
initial application. They were used to assure safe initialization of the hardware, which
was already guaranteed by the sequencing of the initialization routines. However, these
routines become necessary as more Multibus II features are used. This is because some
logical operations, such as accessing a single Multibus II interconnect space register, require

accesses to multiple hardware ports.

Software Application

NASREM defines a layered, hierarchical control system with common interfaces between
layers. The lowest layer in the hierarchy operates at the highest frequency, with a decreasing
frequency of operation with each higher level. Ada tasks were used to implement the
NASREM layers, with the priority of the tasks decreasing with increasing levels in the

hierarchy. The requirement that the argument to the priority pragma be a static expression
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prevented the use of a generic package in defining the NASREM levels. However this was a
minor inconvenience as there was very little code involved in defining the control structure

within a level.

The initial application concentrated on the two lowest levels of the NASREM architecture.
The servo level reads current joint positions and sends motor commands based on the
error between the current and desired position. This level was driven by a programmable
hardware clock which generated a periodic interrupt. The primitive level determines evenly
spaced points between desired end points and performs the kinematic transformations. The
elemental move level initially consisted of simple canned motion generators, and the task
level simply selected the motion to be performed. The robot control function and the
operator interface were both run on the same CPU, with a total of eleven Ada tasks in the

application.

The entire application was coded in Ada. No non-standard pragmas or special interface
routines to the runtime system were used. In addition, we were able to effectively write low
level code in Ada. This included interrupt handlers, hardware interface routines, Multibus
IT message passing routines, and control of a DMA processor. The hardware, and the code
generated by the compiler, provided more than adequate performance for the system. In
experimenting with the control laws the control loop cycle time was varied between 10 and
50 milliseconds. For most of that range all levels of the NASREM architecture were able
to complete in a single cycle. Since the NASREM architecture is set up for approximately
a ten to one ratio in frequency of operation between levels, this leaves plenty of room for

growth.

Current activity includes splitting the robot control function from the operator interface
function and executing them on two CPUs. The initial interface and communication be-
tween the processors is via shared memory. As an alternative, Multibus IT message passing
will also be investigated. This is being done as an exercise in distributing the application.
[tems of interest are the difficulty of implementing various communication schemes and the

relative performance.
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Lessons Learned

Most of the things which could be considered lessons learned are more appropriately clas-
sified as common sense. Specifically, while being able to use a host system for initial debug
and test is a useful development tool, it does not eliminate the need for low level testing
on the target system. This testing is needed to establish the correctness of the hardware-
software interface definitions, and to build confidence in both the hardware and low level
software routines. Having a set of programs to incrementally checkout the low level functions
and interface also provides the basis for trouble-shooting as problems arise. Such routines
were needed to isolate hardware failures and identify improper system initialization, which
happened if a specific sequence was not followed for powering on the electronics racks and

computers.

Another major lesson learned was that portability is not automatic with Ada. There were
two specific instances of this. The first involved differences in the tasking implementation
between the Rational and the 80386 target. Tasks of equal priority are time sliced on the
Rational, but this is not the default for the DDC-I runtime system. A task which was to
run in the background, and which checked flags in an infinite loop, was elaborated before
some of the higher priority tasks were initiated. Since the task didn’t allow for any type
of context switch, as soon as it started executing on the 80386 it kept control of the CPU,
preventing the further elaboration of the system. Inserting a delay statement inside the
loop fixed the problem. The other experience with non-portable Ada code involved a public
domain math functions library. The functions used by the application worked correctly on
the Rational. However on the 80386 system one of the functions produced erroneous results
for certain input values. It was discovered that this math package had hard coded values
for machine specific parameters. We did not try to determine if this was the cause of the
problem as an alternative math functions library was available. This does point out the

need for extensive test data, and a test mechanism, for “reusable” Ada packages.

There still seems to be a tremendous resistance to using Ada language features for embed-

ded, real-time applications. Some of this comes from “experts” who have heard Ada is not
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efficient enough, or just cannot support various real-time or “system” functions. This resis-
tance is probably a positive sign. It used to be said that Ada was too inefficient for almost
all applications, not just real-time applications. Unfortunately system specifics, such as a
particular compiler, target, or any operating system involvement, tend to be forgotten or
ignored. There are certainly systems which cannot come close to supporting time critical
applications, but this does not mean all systems are that way. Much more surprising is
the push by some Ada compiler vendors (and, less surprising, real-time kernel vendors) to
promote special, non-Ada runtime systems. This could be seen as an attempt to distinguish
their product, or provide a higher performance system where needed. However, it could
also be viewed as an attempt to circumvent shortcomings in their runtime system imple-
mentation — which could lead to speculations of what else might be inefficient or poorly
implemented in the system. The use of such systems greatly reduces the portability of the

code and adds another complex system which has to be maintained.

Conclusions

We were able to implement a complex real time system in Ada, and did not have to resort to
circumventing Ada language features or use a special, non-Ada run time system. This was a
result of having hardware, and an Ada compiler and runtime system, with significantly more
performance than was needed by the application. Futhermore, using the Ada tasking system
allowed the initial debug and test of the code to be performed on the host development
system, which was more accessable than the target system. This also allowed the debug
and testing to begin before the target system was available. Another advantage of using Ada
tasks and having sufficient performance margin was that it allowed the application to be
implemented primarily by junior engineers. Some guidance was provided on implementing
the interrupt handler and cyclic task execution. Otherwise they were able to use textbook
taéking solutions, such as having tasks to coordinate exclusive access to resources. All of
this indicates that as Ada compilers continue to mature the idea of leveraging of skills can

be extended to the real-time arena.
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PANEL #4

TOOLS

D. Drew, Unisys
P. Usavage, Jr, General Electric
J. F. Buser, Software Development Concepts






